9,441 research outputs found

    Recovering facial shape using a statistical model of surface normal direction

    Get PDF
    In this paper, we show how a statistical model of facial shape can be embedded within a shape-from-shading algorithm. We describe how facial shape can be captured using a statistical model of variations in surface normal direction. To construct this model, we make use of the azimuthal equidistant projection to map the distribution of surface normals from the polar representation on a unit sphere to Cartesian points on a local tangent plane. The distribution of surface normal directions is captured using the covariance matrix for the projected point positions. The eigenvectors of the covariance matrix define the modes of shape-variation in the fields of transformed surface normals. We show how this model can be trained using surface normal data acquired from range images and how to fit the model to intensity images of faces using constraints on the surface normal direction provided by Lambert's law. We demonstrate that the combination of a global statistical constraint and local irradiance constraint yields an efficient and accurate approach to facial shape recovery and is capable of recovering fine local surface details. We assess the accuracy of the technique on a variety of images with ground truth and real-world images

    X-ray time lags in AGN: inverse-Compton scattering and spherical corona model

    Full text link
    We develop a physically motivated, spherical corona model to investigate the frequency-dependent time lags in AGN. The model includes the effects of Compton up-scattering between the disc UV photons and coronal electrons, and the subsequent X-ray reverberation from the disc. The time lags are associated with the time required for multiple scatterings to boost UV photons up to soft and hard X-ray energies, and the light crossing time the photons take to reach the observer. This model can reproduce not only low-frequency hard and high-frequency soft lags, but also the clear bumps and wiggles in reverberation profiles which should explain the wavy-residuals currently observed in some AGN. Our model supports an anti-correlation between the optical depth and coronal temperatures. In case of an optically thin corona, time delays due to propagating fluctuations may be required to reproduce observed time lags. We fit the model to the lag-frequency data of 1H0707-495, Ark 564, NGC 4051 and IRAS 13224-3809 estimated using the minimal bias technique so that the observed lags here are highest-possible quality. We find their corona size is ~7-15 r_g having the constrained optical depth ~2-10. The coronal temperature is ~150-300 keV. Finally, we note that the reverberation wiggles may be signatures of repeating scatters inside the corona that control the distribution of X-ray sources.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    An Analysis of Kinetic Response Variability

    Get PDF
    Studies evaluating variability of force as a function of absolute force generated are synthesized. Inconsistencies in reported estimates of this relationship are viewed as a function of experimental constraints imposed. Typically, within-subject force variability increases at a negative accelerating rate with equal increments in force produced. Current pulse-step and impulse variability models are unable to accommodate this description, although the notion of efficiency is suggested as a useful construct to explain the description outlined

    Cruise aerodynamics of USB nacelle/wing geometric variations

    Get PDF
    Experimental results are presented on aerodynamic effects of geometric variations in upper surface blown nacelle configurations at high speed cruise conditions. Test data include both force and pressure measurements on two and three dimensional models powered by upper surface blowing nacelles of varying geometries. Experimental results are provided on variations in nozzle aspect ratio, nozzle boattail angle, and multiple nacelle installations. The nacelles are ranked according to aerodynamic drag penalties as well as overall installed drag penalties. Sample effects and correlations are shown for data obtained with the pressure model

    Exploratory studies of the cruise performance of upper surface blown configurations: Experimental program, high-speed pressure tests

    Get PDF
    Basic pressure data are presented which was obtained from an experimental study of upper-surface blown configurations at cruise. The high-speed (subsonic) experimental work, studying the aerodynamic effects of wing-nacelle geometric variations, was conducted around semi-span model configurations composed of diversified, interchangeable components. Power simulation was provided by high-pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Both 3-D force and 2-D pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first-order power effects. Results are also presented from a compatibility study in which a short-haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High-lift test data are used to substantiate the projected performance of the selected transport design

    Exploratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests

    Get PDF
    The work to develop a wing-nacelle arrangement to accommodate a wide range of upper surface blown configuration is reported. Pertinent model and installation details are described. Data of the effects of a wide range of nozzle geometric variations are presented. Nozzle aspect ratio, boattail angle, and chordwise position are among the parameters investigated. Straight and swept wing configurations were tested across a range of nozzle pressure ratios, lift coefficients, and Mach numbers

    Soft Manifold Dynamics Behind Negative Thermal Expansion

    Full text link
    Minimal models are developed to examine the origin of large negative thermal expansion (NTE) in under-constrained systems. The dynamics of these models reveals how underconstraint can organize a thermodynamically extensive manifold of low-energy modes which not only drives NTE but extends across the Brillioun zone. Mixing of twist and translation in the eigenvectors of these modes, for which in ZrW2O8 there is evidence from infrared and neutron scattering measurements, emerges naturally in our model as a signature of the dynamics of underconstraint.Comment: 5 pages, 3 figure

    Exploratory studies of the cruise performance of upper surface blown configurations. Experimental program: Test facilities, model design instrumentation, and lowspeed, high-lift tests

    Get PDF
    The model hardware, test facilities and instrumentation utilized in an experimental study of upper surface blown configurations at cruise is described. The high speed (subsonic) experimental work, studying the aerodynamic effects of wing nacelle geometric variations, was conducted around semispan model configurations composed of diversified, interchangeable components. Power simulation was provided by high pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Three dimensional force and two dimensional pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first order power effects. Results are also presented from a compatibility study in which a short haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High lift test data are used to substantiate the projected performance of the selected transport design

    Linear Differential Constraints for Photo-polarimetric Height Estimation

    Full text link
    In this paper we present a differential approach to photo-polarimetric shape estimation. We propose several alternative differential constraints based on polarisation and photometric shading information and show how to express them in a unified partial differential system. Our method uses the image ratios technique to combine shading and polarisation information in order to directly reconstruct surface height, without first computing surface normal vectors. Moreover, we are able to remove the non-linearities so that the problem reduces to solving a linear differential problem. We also introduce a new method for estimating a polarisation image from multichannel data and, finally, we show it is possible to estimate the illumination directions in a two source setup, extending the method into an uncalibrated scenario. From a numerical point of view, we use a least-squares formulation of the discrete version of the problem. To the best of our knowledge, this is the first work to consider a unified differential approach to solve photo-polarimetric shape estimation directly for height. Numerical results on synthetic and real-world data confirm the effectiveness of our proposed method.Comment: To appear at International Conference on Computer Vision (ICCV), Venice, Italy, October 22-29, 201

    Sensation Seeking and Perceived Need for Structure Moderate Soldiers’ Well-Being Before and After Operational Deployment

    Get PDF
    This study examined associations between sensation seeking and perceived need for structure, and changes in reported well-being among deployed soldiers. Participants (n = 167) were assessed before and after a six-month deployment to south Afghanistan. Results indicated that although well-being declined in the soldier sample as a whole following deployment, the degree of decrease was significantly different among soldiers with different personality profiles. Differences were moderated by soldiers’ level of sensation seeking and perceived need for structure. Results are discussed in terms of a person-environment fit theory in the context of preparation and rehabilitation of deployed military personnel
    • …
    corecore